"Uso de geogrelhas para a redução da espessura de pavimento e melhoramento de subleito em solos de baixa capacidade de suporte na rodovia Iquitos - Nauta"

Autores:

Eng. Carlos Antônio Centurión,

Gerente Técnico Comercial TDM Brasil LTDA.

Eng. Augusto Alza Vilela,

Gerente Técnico Corporativo GRUPO TDM.

Eng. Miguel Rivera Marquina,

Gerente de Operações TDM Brasil LTDA.

Nome da obra: Construção da Rodovia Iquitos - Nauta. Trecho IV Nauta - Ponte Itaya Km. 0+300 - Km. 1+300 e Km. 6+200 - Km. 19+000.

Tipo de Obra: Melhoramento de solos moles e reforço de base granular com geogrelhas bidirecionais rígidas de polipropileno.

Local da Obra: Cidade de Nauta. Iquitos, Peru.

Data da obra: Janeiro, 2004 até junho, 2005.

Geossintéticos usados: Geogrelhas rígidas bidirecionais.

Quantidades: Geogrelha bidirecional BX1100 30.000,00 m2 e geogrelha bidirecional BX1200 120.000,00 m2.

Proprietário da Obra: Governo Regional de Loreto.

Projetista: Governo Regional de Loreto.

Construtora: Consórcio Vial Nauta

Fornecedor: Grupo TDM

Descrição do uso dos geossintéticos:

O governo regional de Loreto decidiu concluir os últimos 19 quilômetros da rodovia Iquitos - Nauta (cuja extensão aproximada é 97 Km), que constituía o trecho IV entre Nauta e Ponte Itaya.

O grande problema para a finalização do projeto era a falta de material granular. No local do projeto, no meio da Amazônia peruana, não existiam pedreiras apropriadas ou vias de comunicação que permitissem o livre acesso do material de empréstimo de locais próximos.

Para esta obra, o material granular para a base e o asfalto deveria ser transportado 1 dia em balsas desde a cidade de Yurimaguas até Nauta (mais de 300,00 km) e posteriormente carregado em caminhões para ser levado até o ponto da obra. Com isto, o custo de transporte incrementava-se em aproximadamente 5 vezes.

Nesse contexto, sugeriu-se o uso das geogrelhas bidirecionais rígidas para reduzir ao máximo as espessuras da base e do asfalto que conformavam a estrutura do pavimento; em outras palavras, a ideia foi substituir parte da camada de material granular requerida no projeto inicial pelo reforço geossintético.

Além de reduzir as camadas do pavimento, usaram-se geogrelhas bidirecionais rígidas para reduzir a quantidade de material de melhoramento na estabilização dos solos moles argilosos, próprios da zona de selva. Isto evitou a destruição da área verde local, visto que seriam utilizados troncos de arvores para fazer a estabilização do subleito.

Descrição da solução com geossintéticos:

O governo regional de Loreto, visando assegurar o êxito na construção da rodovia e considerando os principais requisitos técnicos do projeto, optou pela utilização da geogrelha bidirecional tipo TENSAR BX1100 (Tipo 1) incluindo-a nos trechos pontuais de solos moles ao nível do subleito. O melhoramento de subleitos baseia-se totalmente no conceito da distribuição de cargas em uma área maior; contribuindo desta maneira para minimizar a pressão sobre os solos moles. Finalmente, para o calculo da estrutura de pavimento, foi estabelecido um CBR mínimo de 3,3% (Mr=5.000,00psi) para o subleito.

As camadas seguintes estavam conformadas por: uma sub-base de 15cm de areia limpa de rio como anticontaminante e 15cm de areia siltosa proveniente de uma pedreira próxima; uma base granular de pedra britada de pedreiras próximas à cidade de Yurimaguas, reforçada por uma geogrelha biaxial do tipo TENSAR BX1200 (Tipo 2) ao longo de todo o pavimento novo. Esta geogrelha conta com reportes conclusivos em diversas investigações desenvolvidas por entidades independentes dos EUA como o Corpo de Engenheiros Militares, universidades e outros pesquisadores de prestigio. A vantagem da geogrelha como elemento de reforço da base granular em uma estrutura de pavimento geralmente se quantifica-se em termos do incremento da vida útil medida pelo numero de repetições de carga (fator de eficiência "E" segundo IGS Brasil) e/ou em termos da redução da espessura da camada de base para um pavimento submetido a um determinado tráfego. O reforço de base é gerado mediante um jogo de mecanismos complexos que incluem o confinamento que faz a geogrelha no material granular de base, a través das suas aberturas.

Finalmente, se aplicou uma camada de rolamento de asfalto quente com 5cm de espessura.

Vantagens técnicas obtidas:

Em relação a geogrelha usada como melhoramento de subleitos, a rapidez no processo construtivo e a possibilidade de compactar materiais sobre subleitos moles, fez esta solução tecnicamente mais atrativa que a solução de escavação e troca de materiais, e mais ainda que a solução de estabilização com troncos de arvores.

Durante o desenvolvimento da obra observou-se o previsível ao nível do subleito: solos com uma umidade natural acima da ótima, com perdas das suas características mecânicas e umidade próxima ao limite de liquidez, que não permitiam o acesso aos equipamentos de construção na zona de trabalho; nestes casos, o problema foi facilmente solucionado colocando uma geogrelha bidirecional rígida para montar uma plataforma de acesso.

Em relação a geogrelha que foi colocada como reforço de base, realizaram-se ensaios de seguimento usando a Viga Benkelman no ano 2007 (2 anos após sua construção), e a partir dos resultados das deflexões calcularam-se os valores de C.B.R. (aplicando o modelo de Hogg) e dos Módulos Resilientes (seguindo AASHTO 1993), comparando-os com os resultados dos ensaios obtidos no ano 2005 ao termino da obra.

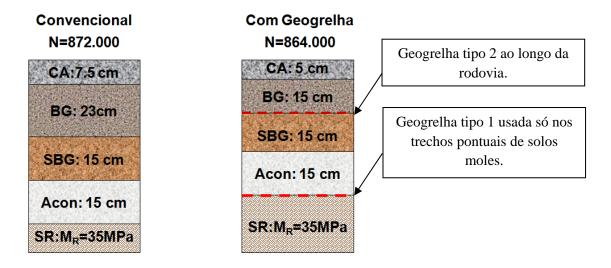
As deflexões "media" e "característica" obtidas a partir das medições efetuadas em março de 2007 foram 26.9 e 14.6% menores que as determinadas ao término de obra (Junho de 2005). Os raios de curvatura foram maiores, 212 % acima da media e 18.6 % acima do valor critico.

Os resultados comprovaram que a presença da geogrelha incrementou a rigidez da base graças ao confinamento lateral do agregado. O esforço cortante foi transmitido à geogrelha pelo agregado, gerando nesta um estado de tensão; a rigidez da geogrelha, assegurada pela estabilidade das suas aberturas, retardou a deformação por tensão do material adjacente. A menor deformação lateral traduze-se em uma menor deflexão da superfície e em um aumento do raio de curvatura, acrescentando a resistência à fatiga da camada de asfalto quente e à vida útil.

Com o objetivo de estimar o valor do módulo da camada de base, efetuo-se um retroanalise mediante um software especializado para pavimentos, empregando como "valores fixos de entrada" as espessuras e módulos resilientes do subleito, sub-base, camada asfaltica e a espessura da Base, e como valor variável o módulo da Base, o qual foi ajustado até obter "valores de saída" próximos à deflexão característica e raio de curvatura crítico obtidos a partir das deflexões medidas, tendo como resultado um módulo da base granular de 45,000 psi, para a deflexão de 94 x 10-2 mm e um raio de curvatura de 95 m medidos no campo. Com este retro-analise demonstrou-se um incremento do módulo da base granular reforçada com geogrelhas de aproximadamente 33,00%.

Vantagens econômicas obtidas:

Considerando que as fontes de agregado pétreo encontravam-se muito longe, foi crucial a redução das espessuras do pavimento com aplicação da geogrelha. Por um lado os tempos de construção foram reduzidos e por outro a economia em agregado foi importante. Essas reduções de base e camada de asfalto tem gerado economias calculadas conservadoramente em quase R\$ 2.500.000,00. Além disso, as deflexões medidas são menores e os raios de curvatura maiores aos esperados ao finalizar a obra, o qual reflete consideravelmente em incremento na vida útil do pavimento (menores custos de manutenção).


TABELA 1: Comparativo econômico entre a solução sem e com geogrelhas

DADOS:			ESTRUTURAS	
Comprimento =	13.800,00 m		CONVENCIONAL	GEOGRELHA
Largura =	9,00 m	CA (cm)	7,5	5,00
Area =	124.200,00 m2	BG (cm)	25,00	15,00
		SBG (cm)	15,00	15,00
PARAMETROS DE CALCULO:		ACON (cm)	15,00	15,00
n =	10 anos	GEOGRELHA	0,00	1,00
N =	835.000,00 ESAL	N (ESAL)	872.000,00	864.000,00
MR =	107 Mpa		CUSTOS R\$	
a1 =	0,44	CA (cm)	27,34	18,23
a2 =	0,14	BG (cm)	47,06	30,69
a3 =	0,09	SBG (cm)	5,11	5,11
m =	1,10	ACON (cm)	5,82	5,82
R =	95%	GEOGRELHA	0,00	6,02
So =	0,45	TOTAL/m2	85,33	65,87
Pi =	4,0	ECONOMIA/m2		19,46
Pf=	2,0	%		23%
		TOTAIS	R\$ 10.597.986,00	R\$ 8.181.054,00
CUSTOS DE MATERIAL INSTALADO:		ECONOMIA TOTAL:		R\$ 2.416.932,00
AC =	364,46 R\$ /m3			
BG =	204,59 R\$ /m3			
SBG =	34,08 R\$ /m3			
ACON =	38,79 R\$/m3			
GEOGRELHA =	6,02 R\$ /m2			

É importante mencionar que sem o uso dos geossintéticos neste projeto, esta rodovia simplesmente não poderia ter sido construída e a população agora não poderia desfrutar de:

- Desenvolvimento socio-econômico da região e melhoramento da qualidade de vida;
- Possibilidade de desenvolvimento através do turismo:
- Acesso de veículos de carga e passageiros assim como a redução a 2 horas de um percurso que antes era feito em 8 horas e por rio, além de gerar competitividade entre os produtores locais mediante a redução dos grandes custos de fretes.

Seção tipo com sequencia de geossintéticos:

NOTA:

CA: Camada de Asfalto,
BG: Base Granular,
SBG: Sub-Base Granular,
ACon: Areia Anticontaminante,

SR: Subleito

MR: Modulo Resiliente

N: Numero de passadas por eixo (requerido pelo projeto: N=835.000).

Fotos das principais etapas da execução da obra:

FOTO 2: Instalação da geogrelha bidirecional rígida tipo 1.

FOTO 3: Instalação da geogrelha tipo 1 e a camada de areia de rio.

FOTO 4: Instalação da sub-base conformada por areia siltosa

FOTO 5: Instalação da base granular sobre a geogrelha tipo 2.

FOTO 6: Aplicação da camada de asfalto quente (maio de 2005).

FOTO 7: Ensaios de seguimento usando a Viga Benkelman no ano 2007

Contribuição dos geossintéticos para a proteção do meio ambiente:

As principais vantagens associadas ao uso de geossintéticos foram:

- Eliminação de corte de arvores da zona, como uma alternativa de solução à estabilização de solos moles.
- Redução significativa da espessura das camadas de base granular e asfalto quente, o que se traduz em uma menor retirada de material das pedreiras e consequentemente menores prejuízos ao meio ambiente.
- Minoração de uso de equipamentos de transporte, conformação, nivelação e de compactação de material, reduzindo assim a quantidade de gases tóxicos, como dióxido de carbono, emitido ao meio ambiente.